nand2/06_IO_Devices/04_SRAM/Readme.md

169 lines
5.7 KiB
Markdown
Raw Normal View History

2023-01-11 10:13:09 +00:00
## 04 SRAM
The evaluation board iCE40HX1K-EVB includes an 512kbyte static ram chip K6R4016V1D. The SRAM chip connects to iCE40HX1K with 37 wires;
- SRAM_ADDR 18 bit
- SRAM_DATA 16 bit (bidiretional inout)
- SRAM_CSX (chip select not)
- SRAM_OEX (output enable not)
- SRAM_WEX (write enable not)
To read and write to the SRAM chip we will add two special function register to HACK:
1. SRAM_A is a 16 bit register mapped at memory location 4104. SRAM_ADDR controls the 16 lower bits of the 18 bit address bus. The two most significant bits are allways 0, so we can only access 64k x 16 bit words of SRAM chip.
2. SRAM_D is a special function register mapped at memory location 4105. SRAM_D controls the bidirectional data bus and the control wires CSX, OEX and WEX.
**Note:** the 16 bit data bus is bidirectional and has therefore to be connected over a tristate buffer. This is done with `InOut.v` which is considered primitive and must not be implemented.
### Chip specification SRAM_A
SRAM_A is a simple `Register` that stores the lower 16 bit of the 18 bit address of the SRAM chip.
### Chip specification SRAM_D
| IN/OUT | wire | function |
| ------ | --------------- | -------------------------- |
| IN | clk | system clock (25MHz) |
| IN | load | initiate a write operation |
| IN | in[15:0] | data to write to SRAM |
| OUT | out[15:0] | data read from SRAM |
| INOUT | SRAM_DATA[15:0] | bidirectional data bus |
| OUT | SRAM_CSX | chip select not |
| OUT | SRAM_OEX | output enable not |
| OUT | SRAM_WEX | write enable not |
When load[t]=1 transmission of word in[15:0] is initiated. The word is send to SRAM over the bidirectional wires SRAM_DATA (direction out) and a write pulse will be triggered for one cycle at t+1:
* SRAM_OEX=1
* SRAM_WEX=0
When load=0 SRAM_DATA will be used as input and the data of the SRAM chip will be presented at out[15:0]
- SRAM_OEX=0
- SRAM_WEX=1
SRAM_CSX can be set to low all the time.
### Proposed Implementation ADDR_A
Use a `Register` to store the lower 16 bit of SRAM_ADDR (The two most significant bits are hardwired to 0).
### Proposed Implementation ADDR_D
Use a `DFF` to delay the load signal. Use a `Register` to store the data in[15:0] to be stored. Use a tristate buffer `InOut.v` to control the direction of the bidirectional SRAM_DATA data bus.
### Memory map
The special function register `SRAM_A` and `SRAM_D` are mapped to memory map of HACK according to:
| address | I/O device | R/W | function |
| ------- | ---------- | --- | ------------------------------ |
| 4101 | SRAM_A | R | address of SRAM |
| 4102 | SRAM_D | R | read data from SRAM |
| 4102 | SRAM_D | W | initiate a write cylce to SRAM |
### buffer.asm
To test HACK with SRAM we need a little machine language programm `buffer.asm`, which reads the first four bytes of an ASCII file previosuly stored to the SPI flash memory chip W25Q16BV of iCE40HX1K-EVB, starting at address 0x040000 (256k) and stores the four bytes to SRAM. Finally we read the four bytes from SRAM and write them to UART.
### SRAM in real hardware
The board iCE40HX1K-EVB comes with a static ram chip K6R4016V1D. The chip is already connected to iCE40HX1K according `iCE40HX1K-EVB.pcf` (Compare with schematic [iCE40HX1K_EVB](../../doc/iCE40HX1K-EVB_Rev_B.pdf).
```
set_io SRAM_ADDR[0] 79 # SA0
set_io SRAM_ADDR[1] 80 # SA1
set_io SRAM_ADDR[2] 81 # SA2
set_io SRAM_ADDR[3] 82 # SA3
set_io SRAM_ADDR[4] 83 # SA4
set_io SRAM_ADDR[5] 85 # SA5
set_io SRAM_ADDR[6] 86 # SA6
set_io SRAM_ADDR[7] 87 # SA7
set_io SRAM_ADDR[8] 89 # SA8
set_io SRAM_ADDR[9] 90 # SA9
set_io SRAM_ADDR[10] 91 # SA10
set_io SRAM_ADDR[11] 93 # SA11
set_io SRAM_ADDR[12] 94 # SA12
set_io SRAM_ADDR[13] 95 # SA13
set_io SRAM_ADDR[14] 96 # SA14
set_io SRAM_ADDR[15] 97 # SA15
set_io SRAM_ADDR[16] 99 # SA16
set_io SRAM_ADDR[17] 100 # SA17
set_io SRAM_CSX 78 # SRAM_#CS
set_io SRAM_OEX 74 # SRAM_#OE
set_io SRAM_WEX 73 # SRAM_#WE
set_io SRAM_DATA[0] 62 # SD0
set_io SRAM_DATA[1] 63 # SD1
set_io SRAM_DATA[2] 64 # SD2
set_io SRAM_DATA[3] 65 # SD3
set_io SRAM_DATA[4] 66 # SD4
set_io SRAM_DATA[5] 68 # SD5
set_io SRAM_DATA[6] 69 # SD6
set_io SRAM_DATA[7] 71 # SD7
set_io SRAM_DATA[8] 72 # SD8
set_io SRAM_DATA[9] 60 # SD9
set_io SRAM_DATA[10] 59 # SD10
set_io SRAM_DATA[11] 57 # SD11
set_io SRAM_DATA[12] 56 # SD12
set_io SRAM_DATA[13] 54 # SD13
set_io SRAM_DATA[14] 53 # SD14
set_io SRAM_DATA[15] 52 # SD15
```
***
### Project
* Implement `SRAM_D.v` and simulate with testbench:
```
$ cd 04_SRAM_D
$ apio clean
$ apio sim
```
* Compare output of your chip `OUT` with `CMP`.
![](sram_tb.png)
* Edit `HACK.v` and add a `Register` for SRAM_A memory mapped to 4101.
* Edit `HACK.v` and add a special function register `SRAM_D` to memory address 4102.
* Implement `buffer.asm` and test with the testbench:
```
$ cd 04_SRAM_D
$ make
$ cd ../00_HACK
$ apio clean
$ apio sim
```
* Check the SRAM wires of the simulation and look for the storing of "SPI!" (which was preloaded in SPI chip at memory address 0x040000 of the testbench).
![](buffer1.png)
* Check the output at UART_TX in the long run. You should see the string "SPI!" output to UART_TX:
![](buffer.png)
* preload the SPI memory chip with some text file at address 0x040000.
* build and upload HACK with `buffer.asm` in ROM.BIN to iCE40HX1K-EVB.
- press reset button on iCE40HX1K-EVB and see if wou can receive the preloaded text file on your Computer.
```
$ echo SPI! > spi.txt
$ iceprogduino -o 256k -w spi.txt
$ cd 04_SRAM_D
$ make
$ cd ../00_HACK
$ apio clean
$ apio upload
$ tio /dev/ttyACM0
```