/** * The ALU (Arithmetic Logic Unit). * Computes one of the following functions: * x+y, x-y, y-x, 0, 1, -1, x, y, -x, -y, !x, !y, * x+1, y+1, x-1, y-1, x&y, x|y on two 16-bit inputs, * according to 6 input bits denoted zx,nx,zy,ny,f,no. * In addition, the ALU computes two 1-bit outputs: * if the ALU output == 0, zr is set to 1; otherwise zr is set to 0; * if the ALU output < 0, ng is set to 1; otherwise ng is set to 0. */ // Implementation: the ALU logic manipulates the x and y inputs // and operates on the resulting values, as follows: // if (zx == 1) set x = 0 // 16-bit constant // if (nx == 1) set x = !x // bitwise not // if (zy == 1) set y = 0 // 16-bit constant // if (ny == 1) set y = !y // bitwise not // if (f == 1) set out = x + y // integer 2's complement addition // if (f == 0) set out = x & y // bitwise and // if (no == 1) set out = !out // bitwise not // if (out == 0) set zr = 1 // if (out < 0) set ng = 1 `default_nettype none module ALU( input [15:0] x, // input x (16 bit) input [15:0] y, // input y (16 bit) input zx, // zero the x input? input nx, // negate the x input? input zy, // zero the y input? input ny, // negate the y input? input f, // compute out = x + y (if 1) or x & y (if 0) input no, // negate the out output? output [15:0] out, // 16-bit output output zr, // 1 if (out == 0), 0 otherwise output ng // 1 if (out < 0), 0 otherwise ); // Put your code here: wire [15:0] xa; wire [15:0] xb; wire [15:0] xc; wire [15:0] ya; wire [15:0] yb; wire [15:0] yc; wire [15:0] xandy; wire [15:0] xplusy; wire [15:0] xf; wire [15:0] xn; wire [7:0] zri; wire [7:0] zrj; wire ngr; wire zrm; wire zrn; wire zro; wire tt; wire ff; // Mux16(a=x, b=false, sel=zx, out=xa); // Not16(in=xa, out=xb); // Mux16(a=xa, b=xb, sel=nx, out=xc); Mux16 MUXX1(x, 16'b0, zx, xa); Not16 NOTX1(xa, xb); Mux16 MUXX2(xa, xb, nx, xc); // Mux16(a=y, b=false, sel=zy, out=ya); // Not16(in=ya, out=yb); // Mux16(a=ya, b=yb, sel=ny, out=yc); Mux16 MUXY1(y, 16'b0, zy, ya); Not16 NOTY1(ya, yb); Mux16 MUXY2(ya, yb, ny, yc); // And16(a=xc, b=yc, out=xandy); // Add16(a=xc, b=yc, out=xplusy); // Mux16(a=xandy, b=xplusy, sel=f, out=xf); And16 ANDZ1(xc, yc, xandy); Add16 ADDZ1(xc, yc, xplusy); Mux16 MUXZ1(xandy, xplusy, f, xf); // Not16(in=xf, out=xn); // Mux16(a=xf, b=xn, sel=no, out=out, out[15]=ngr, out[0..7]=zri, out[8..15]=zrj); Not16 NOTF1(xf, xn); Mux16 MUXF1(xf, xn, no, out); assign ngr = out[15]; assign zri[7:0] = out[7:0]; assign zrj[7:0] = out[15:8]; // Or8Way(in=zri, out=zrm); // Or8Way(in=zrj, out=zrn); Or8Way OR8F1(zri, zrm); Or8Way OR8F2(zrj, zrn); Or ORF1(zrm, zrn, zro); Not NOTF2(zro, zr); Mux MUXF2(1'b0, 1'b1, ngr, ng); // Or(a=zrm, b=zrn, out=zro); // Not(in=zro, out=zr); // Mux(a=false, b=true, sel=ngr, out=ng); endmodule